- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Asselin, Genevieve M. (1)
-
Paden, Olivia (1)
-
Qiu, Weiqi (1)
-
Sa, Niya (1)
-
Yang, Zicheng (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The development of the multivalent electrolytes is a critical component to advance polyvalent energy storage technology. In this work, a new and simple nonaqueous zinc electrolyte is developed and investigated where a secondary amine is introduced as a cosolvent. The addition of dimethylamine (DMA) as a cosolvent in THF facilitates the solubilization of Zinc (II) bis(trifluoromethanesulfonyl)imde (Zn(TFSI)2) and results in a homogeneous electrolyte with reversible plating of zinc achieved at high coulombic efficiencies. The electrochemical properties of the developed electrolyte and the effects of the cosolvent and salt concentrations are systematically investigated. It was found that increasing the ratio of the cosolvent DMA in THF for a Zn(TFSI)2electrolyte leads to more facile kinetics, better ion solubilization, and higher ion mobility evidenced by up a significant increase in conductivity as well as the plating/stripping current densities. Increased Zn(TFSI)2salt concentration in a 2.0 M DMA in THF solvent mixture not only leads to a higher current density and conductivity, but also a higher molar conductivity due to a redissociation mechanism. The findings in this study are relevant and important to further understand and characterize multivalent electrolytes from a simple and effective electrolyte design strategy.more » « less
An official website of the United States government
